
On blowup in semilinear wave equations

Radosªaw A. Ky
ia

rky
ia�mail.pk.edu.pl

Cra
ow University of Te
hnology, Kraków

RIKEN Lun
h Seminar

03.07.2013



Outline

1

Introdu
tion

2

Self-similar solutions

3

PDEs

Super
riti
al 
ases

Criti
al 
ases

NLKG - n = 3, p = 3

n = 3, p = 3

4

A few stri
t results - some math.

Generally about singularity formation

Criti
al NLW

Sub
riti
al NLKG



Introdu
tion

Nonlinear Genera Relativity equations - Bla
k Holes.

Nonlinear Navier-Stokes equations - turbulen
e, formation of

dorps,...



Introdu
tion

Nonlinear Genera Relativity equations - Bla
k Holes.

Nonlinear Navier-Stokes equations - turbulen
e, formation of

dorps,...



Base equation

U

tt

−△U + µU − U

p = 0, U = U(x , t), x ∈ R

n. (1)

µ = 0 NLW

µ = 1 NLKG
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aling

Used by enginieers by building small-s
ale mo
kups that

resemble oryignal-s
ale model.

Dimension analysis of nu
lear explosion by G.I. Taylor.

Supernova blast.
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Symmetries

Equation symmetry

Uλ(t, r) = λα
U
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λ
,
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, α =
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p − 1

.
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tional

E [U] =

∫

R

n

(

1

2

U

2

t

+
1

2
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s
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E [Uλ] = λβ
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aling is:
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Self-similar solutions

De�nition

U(t, r) = (T − t)−α
u(ρ), ρ =

r

T − t

(2)

Equation for self-similar pro�les

(1− ρ2)u′′ +

(

n − 1

ρ
−

2(p + 1)

p − 1

ρ

)

u

′ −
2(p + 1)

(p − 1)2
u + u

p = 0 (3)
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Self-similar solutions

Solution around ρ = 0 are simple Taylor series.

Solutions around ρ = 1 are:

simple Taylor series for k = (n−1)p−n−3

2(p−1) - noninteger;


ompli
ated when k - integer (resonan
e 
ondition);

These solutions 
an be mat
hed - we get global solution on

ρ ∈ [0; 1].Countable family of self-similar pro�les.

There is simple numeri
al method to 
onstru
t these solutions.
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Self-similar solutions

Movable singularities for lo
al solutions at ρ = 0 are 
onne
ted

with singularities of Lane-Emden equation.

Global solution vanish when ρ → ∞.
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PDEs

How similar the evolution of (NLW)

U

tt

− U

rr

−
n − 1

r

U

r

− U

p = 0 (4)

is to the evolution of (NLKG)

U

tt

− U

rr

−
n − 1

r

U

r

+ U − U

p = 0. (5)

Conje
ture

Blowup asyptoti
s of (4) is stru
turally stable under the

perturbation resultin in adding the mass term.



ODE blowup

Time independent solution for NLW:

U

0

(t) =
b

0

(T − t)α
, b

0

=

(

2(p + 1)

(p − 1)2

)
1

p−1

is stable and is the attra
tor for the solutions that blows up in �nite

time. It is true for arbitrary spatial dimension.
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Intermediate attra
tors



Intermediate attra
tors - no hair theorems BH



Super
riti
al 
ases

l -th self-similar solution has l unstable modes.

First solution is intermediate attra
tor (even for spe
ial k


ases):

U(t, r) =
u

1

(ρ)

(T − t)α
+ C

ξ
1

(ρ)

(T − t)λ1+α
+ damped modes,

For NLKG intermediate asymptoti
s �
onverges� to the �rst

self-similar solution of NLW.
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Criti
al 
ases

There exist only one self-similar solution (apart from the trivial

one).

Stati
 solution plays spe
ial role (it is unstable - one mode):

Q(r) =
1

(1+ br

2)α
, b =

p − 1

4n

, Qλ(r) =
1

λα
Q(r/λ). (6)

Possible behaviours:

Type I blowup - generi
 one.

Type II blowup - (6) z lim

t→T

λ(t) → 0.

Solution 
onverges to stati
 solution.

�Dispersion�
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Criti
al 
ases

Numeri
al simulations with initial 
onditions:

U(t = 0, r) = Ar

2

e

−

(

r−x

0

s

)

4

, U

t

(t = 0, r) = 0;

A and x

0

are parameters, s �xed.



NLKG - n = 3, p = 3

U

tt

− U

rr

−
2

r

U

r

+ U − U

3 = 0,

Stati
 solution is unstable attra
tor

S

rr

+
2

r

S

r

− S + S

3 = 0

with S(0) = 4.34....

Expansion around the attra
tor

U(t, r) ≈ S(r) + A

0

e

s

0

t

v

0

(r) + C

sin(t + δ)

t

3/2
v(λ = 0, r).

Numeri
 suggests damping of the type ∼ t

−1/2
.
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NLKG n = 3, p = 3
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A few stri
t results...

...what mathemati
ans 
an say about this.

(some results of J. Krieger, K. Nakanishi, W. S
hlag, O. Costin, D.

Tataru, R. Donninger, P. Raphael,...)



Singularity formation for (some) nonlinear equations [2℄

P

d

2

u

dt

2

= −A(t)u + F (u), t ∈ [0,T ), u(0) = u

0

, u

t

(0) = v

0

u(t) mapping form some region to Hilbert spa
e;

A(t) - symmetri
, non-negative operator for t ≥ 0 (e.g.

Lapla
e operator);

P - symmetri
, positive operator (e.g. identity);

F - nonlinear term (e.g. polynomial);



Singularity formation for (some) nonlinear equations [2℄

Let F has �potential fun
tional� given by

V (x) =

∫

1

0

(F (tx), x)dt,

and let exists α > 0, that

(x ,F (x)) ≥ 2(2α+ 1)V (x),

then, if

V (u
0

) >
1

2

[(u
0

,A(0)u
0

) + (v
0

,Pv
0

)] =: E
lin

(0),

then u exists only for �nite times T < ∞:

lim

t→T

−(u,Pu) = +∞.

When V (u
0

) < E

lin

(0) 
ould have exists for arbitrary times...
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Types of behaviour for 
riti
al p = 5

For radial solution u in 
riti
al 
ase there is possible to develop into:

Type I blowup: T+(u) < ∞ and

lim

t→T+||(u(t), ∂tu(t))||
Ḣ

1×L

2

= ∞

Type II blowup: T+(u) < ∞ and there exist the fun
tions

(v
0

, ∂
t

v

1

) ∈ Ḣ

1 × L

2

, the number J ∈ N\{0}, that for
j ∈ {1, . . . , J}, and for signs of i

j

∈ {±} and for the positive

fun
tions λ
j

(t) de�ned for t 
lose to T+ we have

λ
1

(t) ≪ . . . ≪ λ
J

(t) ≪ T+ − t dla t → T+,

lim

t→T+

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(u(t), ∂
t

u(t)) −





v

0

+
J

∑

j=1

i

j

λ
j

(t)1/2
Q

(

x

λ
j

(t)

)

, v
1





∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Ḣ

1×L

2

= 0
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Types of behaviour for 
riti
al p = 5

Global solution: T+(u) = ∞ and there exist the solution v

L

of the linear equation, the number J ∈ N, that for

j ∈ {1, . . . , J}, and for the sign of i

j

∈ {±} and positive

fun
tions λ
j

(t) de�ned for large t we have

λ
1

(t) ≪ . . . ≪ λ
J

(t) ≪ t dla t → ∞,

lim

t→+∞

∣

∣

∣

∣

∣

∣

∣

∣
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∣

∣

∣

(u(t), ∂
t

u(t)) −





v

L

(t) +
J

∑

j=1

i

j

λ
j

(t)1/2
Q

(

x

λ
j

(t)

)

, ∂
t

v

L

(t)


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∣
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∣
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∣

∣

∣

∣

Ḣ
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2

= 0,

***

f (t) ≪ g(t) for t → L when lim

t→L

f (t)
g(t) = 0.



�Energy� for 
riti
al 
ase p = 5

If E (u) < 0 then solution blows up in �nite time

lim

t→T+(||u(x , t)||H1
+ ||∂

t

u(x , t)||
L

2
) = ∞;

If E (u
0

, v
0

) < E (Q, 0) then:

for || ▽ u

0

|| < || ▽Q|| - the solutions exists for all times;

for || ▽ u

0

|| > || ▽Q|| - the solutions blows up.;

If E (u
0

, v
0

) = E (Q, 0) (energy threshold) then for data

|| ▽ u

0

||+ ||v
0

|| ≤ || ▽ Q|| we have global existen
e; the only

solutions with this 
lass that do not disperse are ±Q.



�Energy� for 
riti
al 
ase p = 5

Blowup in �nite time (type I + II):

lim

t→T+||(u(t), ∂tu(t))||
Ḣ

1×L

2

∈ (|| ▽ Q||,∞]

Global existen
e:

lim

t→T+||(u(t), ∂tu(t))||
Ḣ

1×L

2

= A,

su
h that

2E (u
0

, u
1

) ≤ A ≤ 3E (u
0

, u
1

).

(u
0

, u
1

) - initial data with Ḣ

1 × L

2

.



Sub
riti
al NLKG n = 3, p = 3

Let S be a radial solution of stati
 equation

−△S + S = S

3.

The energy of this solution ful�lls

E (S) =: J(S) > 0.

Solutions below the energy of stati
 solution E (u) < E (S)
depending on the value of

K

0

(u) := ∂λJ(λu)|λ=1

develop into

K

0

(u(0)) ≤ 0 - global solutions for all times;

K

0

(u(0)) > 0 - blowup in �nite time ±T ;

There also exist �one pass theorems� that say that the solution 
an

rea
h the neighborhood of ±S only on
e during the evolution !
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